Understanding Melodic Dictation via Experimental Methods David John Baker

Louisiana State University

Author Note

David John Baker, School of Music, Louisiana State University Correspondence concerning this article should be addressed to David John Baker, Department of Computing, Goldsmiths, University of London, London

Contact: davidjohnbaker1@gmail.com

Abstract

Melodic dictation is an inherently complex task that students are expected to learn. Due to the complexity of the task, fairly assessing what a student can reasonably be expected to do varies greatly. Not only do students have various levels of training and use different strategies to dictate, but individuals also differ cognitively. Additionally, the extent to which a melody is deemed appropriate in terms of its difficulty varies depending on student ability. What melody should be chosen for a dictation is often left up to the instructor's expertise for assessments. While there is no substitute for intuition in the classroom, there is still a great deal to be understood about what can be expected of students at various skill levels given the ubiquity of aural skills assessments. Formalizing and understanding this process is central to being able to move aural skills research forward in a systematic way.

This chapter provides the context and rationale for using tools from computational musicology and cognitive psychology in order to better understand which factors contribute to performance on melodic dictation tasks. The chapter explains the benefits of using these tools and provides a high level walk through for how practitioners with minimal experience in computational musicology or cognitive psychology can begin designing their own empirical aural skills research questions. The chapter concludes with a discussion of the pedagogical advances and new avenues for interdisciplinary research made possible by including these methodologies in regular pedagogical practices as well as the benefits the field of aural skills research might experience if aural skills instructors were to adopt these methods in their own research.

Keywords: melodic dictation, experimental methods, computational musicology, cognitive psychology, music cognition

Understanding Melodic Dictation via Experimental Methods

Establishing the Problem

Melodic dictation is a cognitively demanding process that requires individuals to be able to hear a melody, then transcribe what they hear without any external reference to aid them. It is a staple of many aural skills curricula because the mastery of melodic dictation brings with it a deeper understanding of goals central to the aural skills classroom. Despite its centrality and near ubiquity in music education, accounting for all the variables that will inevitably cause a student to perform well on a melodic dictation is cumbersome.

Not only is melodic dictation a complex, cognitive process requiring elaborate mental choreography (G. Karpinski, 1990; G. S. Karpinski, 2000), but there is variability in both individual ability (Cowan, 2014; Jakubowski, Müllensiefen, et al., 2017) and the structure of the melodies themselves (Harrison et al., 2017; Müllensiefen & Halpern, 06/2014) that researchers have demonstrated affects how people remember musical materials. With so many factors to account for, it is no wonder that some pedagogues have expressed an interest in beginning to standardize certain benchmarks for students as they progress through their aural skills development (Paney & Buonviri, 01/2014). From a pedagogical standpoint, questions of standardization help pedagogues understand what can reasonably be expected of students in order for them to be fairly assessed. Having a clearer understanding of what factors might contribute to an individual's ability to perform well in melodic dictation is also important so assessments do not inadvertently measure factors beyond a student's control.

Often aural skills pedagogues rely on their expert opinion when it comes to assessing ability in aural skills, but research from decision making sciences demonstrates how expert opinion often leads to inferior objective assessments of individual cases due to unconscious biases (Kahneman, 2012; Meehl, 1954). As a pedagogical community, it is important to understand what factors contribute to an individual's ability to take melodic dictation, not only to ensure fairness in assessing a student's work, but additionally because understanding

what factors contribute to an individual's ability to take melodic dictation allows pedagogues to better explain how students can improve and grow during as they progress through their aural skills education.

With so many variables at both the individual and musical level to keep track of, how does one even begin to keep track of all these moving parts? One way to help organize and systematize research in aural skills research is to borrow tools from the sciences, since questions about aural skills ability are fundamentally questions about music perception. While some might see using such blunt reductions of melodies and consideration of factors typically outside the scope of the classroom as incompatible to our pedagogical goals as teachers, the reason for doing this is to see what insights can be gleaned to help teaching, rather than centering these research methods as didactic tools. Specifically, I borrow from computational musicology to help discuss the sonic elements related to melodic dictation and borrow from cognitive psychology in order to discuss individual differences. This chapter continues to build on the past three decades of research bridging the gap between music cognition and aural skills. Creating an accessible resource for aural skills pedagogy serves as a way to continually bridge the gap between aural skills pedagogy and the world of music cognition (Brown, 2000-2001; Butler & Lochstampfor, 1993; David Butler, 1997; G. Karpinski, 1990; G. S. Karpinski, 2000).

Melodic Dictation: A Lot To Think About

Before diving into how methods from the sciences might help to understand the complex process that is melodic dictation, let me illustrate why such systematization is needed. Imagine the following scenario: A second year undergraduate oboe player without absolute pitch, majoring in music, must dictate a syncopated, arpeggiating melody in C# minor played in the lower register of the piano at a quick tempo after one playing of the melody.

From the teacher's standpoint, it might be easy to imagine what you as an instructor could do in order to make this task easier for the student. For example, quick and easy fixes

that might make this more doable would be to increase the number of hearings the student is allowed, slow down the tempo, change the octave that the melody is played in, and tell the student they are allowed to write down the melody in a key other than C# minor. Taking full advantage of the fact that this is a thought experiment, other variables in this situation that might make the task even easier, but are more imaginative, would be to give the student absolute pitch and maybe turn them into a graduate student who has taught a few semesters of aural skills. Of course the first set of changes are more practical than being able to magically give someone absolute pitch or add on years of musical experience, but these changes exemplify that external factors are at play. Any changes fundamentally modify the exercise as a whole, but this fictitious thought experiment serves to demonstrate that with melodic dictation, there are many factors that presumably affect performance, with some affecting more than others. Acknowledging that there are many factors that would contribute to this, the next two questions an aural skills researcher looking to understand this process might be:

- 1. How does one keep track of the many factors that affect performance?
- 2. How is it then possible to take the qualitative features described above and turn them into something not dependent on the relative experience of the individual making this judgment?

In the next section, I first address the question of how to keep track of so many moving parts, then answer the second question by introducing how tools from cognitive psychology and computational musicology can help remove this relative ambiguity.

Keeping Track Of It All

In order to better organize specific factors thought to contribute to melodic dictation, I present Figure 1 which provides a taxonomy to help organize the many factors that contribute to an individual's ability to take melodic dictation originally presented in (David John Baker, 2019).

[FIGURE 1 HERE]

The taxonomy in Figure 1 organizes the factors thought to contribute into an individual's performance on melodic dictation, or any form of musical memory task, by initially splitting the factors into two parts: individual and musical features. I put forward this taxonomy to help answer my first question of how to best keep track of these many factors.

As discussed in Baker (2019), individual factors from the above taxonomy are concerned with factors that are different between people and do not take into account any sort of sonic features in the context of melodic dictation. The individual factor bifurcates into both cognitive and environmental features. Cognitive factors refer to any aspect of an individual that deals with the process of thinking. Examples of these would include if the individual has absolute pitch, their working memory capacity, or could even be their age if used as a proxy for development. These factors are typically beyond the conscious control of the individual. Environmental factors, on the other hand, describe aspects of an individual that reflect their prior experiences such when they began taking music lessons, what instrument they primarily practice, or could extend to how much money has been invested in their musical training. The categories are not meant to be mutually exclusive, but rather a descriptive framework to help organize thinking before employing the scientific tools we will see below.

Musical factors encapsulate both structural and experimental aspects of a melodic dictation. Structural aspects of the melody are features of the melody that remain invariant when written down on musical notation that only capture changes in pitch over time. Experimental factors refer to how the melody is performed: the timbre of the melody, how fast the melody is played, and how many times it is played. Again, the categories in this taxonomy are not meant to be mutually exclusive and this taxonomy favors European, Western conceptualizations of music reflecting that melodic dictation is a European, Western conception.

Readers familiar with other literature on melodic dictation will notice the taxonomy in Figure 1 accounts for variables beyond those put forward by Karpinski (2000) whose didactic

model focuses solely on the mental choreography required of the individual and does not include musical features thought to contribute to the model. Figure 1 intends to provide not only a means to conceptualize the factors of interest, but importantly will allow a way for empirical researchers to organize what variables might contribute to an individual's ability to take melodic dictation.

Taxonomizing has many benefits. The first is that it allows researchers to answer the first question from above and consequently organizes research into the many factors into more tangible mental categories. Having language to keep track of all this allows the researcher to focus on what they are interested in and accounts for variables that might confound what they hope to better understand. The second benefit is that given a mental model of separating factors into separate variables, this consequently allows aural skills researchers to begin addressing the second question from above so that musical features can be operationalized as variables to be manipulated in an experimental setting. Being able to operationalize --meaning deciding how something abstract will be measured-- allows for several important benefits which ultimately lay the groundwork and provide the rationale as to why tools from computational musicology and cognitive psychology can help research in aural skills. Next, we explore why this operationalization is key to being able to incorporate both work from computational musicology and cognitive psychology.

As many people who teach music are aware, it is very difficult to talk about melodies without relying on the often jargon heavy language provided by music theory and analysis. There is not, nor should there be, any sort of deterministic language to describe musical structures, so often those in charge of teaching will let their own subjectivities guide what is needed for classroom instruction. Due to this general relativity in discussing musical structures, what one teacher might deem as "easy-to-dictate" for a certain group of students they are responsible for teaching might also be described as "difficult-to-dictate" by another teacher with responsibilities to a different population of students. In daily pedagogical practice, this relativity is not often a problem since teachers use their own judgment to suit

the needs of their classroom. The problem with this is that relative judgments of difficulty will not generalize beyond the immediate classroom, making it more difficult to share information with others.

Instead of attempting to reconcile subjective differences and reach an agreement between many individuals, we can instead borrow ideas from the field of computational musicology to get an objective proxy for difficulty that will be invariant regardless of who makes the judgment. For example, it is much easier to come to a consensus about how many notes are in a melody and what tempo a melody is played in beats per minute than to mark a melody with a relative judgment such as "suitable for a first year student" or "of medium difficulty." In addition to tethering features of a melody to something quantitative and objective, using these types of measures allows the field of aural skills to be able to engage with findings from cognitive psychology and computational musicology to help inform the direction of a research program.

In the next section, we take a brief exploration through literature in computational musicology and cognitive psychology to show how empirical tools can help bring a clearer understanding of factors that contribute to melodic dictation. Being able to quantify factors we presume to contribute to how an individual performs in melodic dictation, our dependent variable of interest, opens up the possibility of statistically modelling these relationships, bringing the community one step closer to understanding the inner workings of this process.

What The Scientific Literature Has To Offer

Using the taxonomy from Figure 1 as our guide, we can now investigate literature that can inform future work on melodic dictation. I first begin with exploring individual features, then explore work looking at musical features.

Considering both cognitive and environmental individual factors simultaneously, it is not difficult to find studies that report that both musical training and pre-existing individual cognitive differences as factors that can be used as successful predictors in tasks of musical

perception. For example, in a meta-analysis by Talamini and colleagues, the authors found that musicians tended to outperform their non-musical counterparts on many memory tasks. especially if that task had tonal elements (Talamini et al., 2017). This finding corroborates earlier ideas put forward by Berz who noted that many tasks that are used in the world of music perception share many similarities with the concept of working memory (Berz, 1995). This finding is important in regard to any empirical work in melodic dictation because recently some scholars like Chenette (2019) have argued in favor of reframing work in aural skills around concepts regarding working memory.

Chennette centers these ideas in his own work and is corroborated by researchers in music perception who have shown links between the ability to remember melodic information and performance on musical memory tasks (Colley et al., 08/2017; Nichols et al., 06/2018). It follows that if concepts like working memory capacity, which have been theorized to be instrumental in understanding tasks of musical memory as suggested by both Berz and Chennette, then presumably variation in working memory capacity would be something to consider in any empirical investigations of performance in something like melodic dictation. Additionally, there has been a considerable amount of theoretical work devoted to studying working memory that researchers interested in applying those findings to in a musical context can base their work (Cowan, 2005).

Likewise, while a large amount of literature have show mixed results linking cognitive ability and general musical training (Swaminathan & Glenn Schellenberg, 2018), recent meta analyses have noted serious problems in this program of research, even calling for its dismissal after no effects have been demonstrated when controlling for quality of study (Sala & Gobet, 2020). In surveying this literature, aural skills researchers are able to save time and resources and investigate hypotheses that are more likely to be correct.

Turning now to factors of the musical side of the taxonomy, researchers in music psychology have demonstrated that computationally derived summary features of melodies have been successful in predicting performance on melodic tasks. While many of these

summary features do not yet have a track record of mapping to features in melodic dictation tasks, computationally derived features have been used to predict court case decisions in cases of musical plagiarism (Müllensiefen & Pendzich, 2009), historical data predicting the position of songs from the Beatles' album *Revolver* (Kopiez & Mullensiefen, 2011), memory for melodies in musical recall experiments (Harrison et al., 2017; Müllensiefen & Halpern, 06/2014), memory for earworms (Jakubowski, Finkel, et al., 2017; Williamson & Müllensiefen, 2012), and memorability of pop music hooks (Van Balen et al., 2015). There has been research suggesting that the structural features of melodies when distilled into a composite measure of complexity (David J. Baker & Müllensiefen, 2017; Harrison et al., 2017) can also be predictive of performance on tasks involving musical memory.

In each case listed above, the degree that a certain melody was remembered was able to be predicted above chance accuracy using an assemblage of features from the FANTASTIC toolbox (Mullensiefen, 2009). If successful in prediction settings in the music perception literature, there is no reason these same features could not be further extended to melodic dictation paradigms as in work from Baker, Monzingo, and Shanahan (Baker, D, Monzingo, E., Shanahan, D., 2018).

Experimental Walk Through

Having now explored just a subset of the many variables that research in computational musicology and cognitive psychology have shown to be linked to melodic memory, how would one begin to start their own line of empirical research in order to investigate this further? What pitfalls should a practitioner well versed in aural skills teaching, but not empirical methods, be aware of? In this next portion of this chapter, I take a high level walk through of ideas and concepts someone looking to start their own research might consider before embarking on their own programme of research in this area.

The first temptation a researcher might be drawn to, having read literature on factors affecting musical memory, is to create a giant list of every variable of interest to use as a predictor in hopes of using them to understand performance on melodic dictation. This

approach is discouraged as the inclusion of too many variables in a prediction leads to overfitting. While there is no way to explain the intricacies of experimental design and data analysis within the scope of this chapter, there are multiple resources interested researchers can use to supplement their education (McElreath, 2020). As collecting data for music psychology experiments has historically run the risk of claiming to discover true findings when none exist for many reasons (Frieler et al., 2013), research on melodic dictation is no different in this regard. For these reasons, the first important task for the researcher is to pick variables that are ideally theoretically viable and pedagogically of interest.

For example, we might note from above that work by Eerola and colleagues (Eerola, 2016) reported that note density has shown to be a predictor in experiments of musical memory. From a pedagogical standpoint, this is a variable of interest since it is related to questions about working memory capacity and chunking (Chenette, 2019) and is calculated by dividing the number of notes by the time period it takes to sound them. There might be other variables that presumably affect this from the musical level, so perhaps getting more abstract, we could select a measure of interval entropy since there has also been work showing how measures of information content, a mathematical formalization of expectedness, can be predictive of memory on musical memory tasks (Pearce, 07/2018). Researchers should be cautious of the fact that both our hypothetical variables selected are not completely independent of one another. This collinear relationship illustrates something that has been noted in the literature going back to Taylor and Pembrook (1983) within musical features investigating musical recall.

It is possible to include both variables in the model, but as more are added, the addition of multiple collinear variables in our eventual statistical model will lead to instability (Harrell & Jr., 2015). Again, some researchers in the field of music perception have addressed this statistical problem using certain forms of data reductive techniques (David J. Baker & Müllensiefen, 2017; Harrison et al., 2017), but this comes at the price of having to interpret the final output at a layer of abstraction that does not directly map to the initial

variables of interest. While an almost infinite amount of metrics could be used to operationalize features on the musical side of the taxonomy, software for computing these features exists such as Mullensiefen's FANTASTIC tool box that in this case is capable of computing both note density and interval entropy (Mullensiefen, 2009).

In addition to measuring at the musical level, it is also possible to keep track of variables at the individual level. From the fictitious example in the introduction, it would be not only reasonable from an intuitive standpoint to be aware of variables like musical training or number of weeks of aural skills education, but as noted above in the research from music psychology, there is literature to suggest applying these individual differences in our final statistical models. Presumably a considerable amount of variation in our responses can be explained by just the variation within the baseline ability of an individual. For example, we may include the two aforementioned variables of number of weeks of aural skills classes taken or the age that an individual started music lessons.

In both the case of the musical and individual features, from an experimental standpoint, each of these variables would have to be collected and tracked for every individual taking part in a study on melodic dictation. In addition to these variables of interest, past experience would also remind us that variables such as what tempo each melody is to be played, the timings between hearings, how many hearings are included, and other variables should be considered.

Given the amount of variables at play, ideally this can be done with an automated process. One final caveat before moving on to the data collection is that when selecting melodies, researchers need to ensure that whatever melodies are chosen, it is important to select melodies that are either too easy or too difficult so that participants will score perfectly or be unable to complete the task. While a perfect score would be something to celebrate in a pedagogical context, having many individuals able to completely ace a melodic dictation creates something referred to as a ceiling effect, making it impossible to learn anything since the information from a scientific point of view comes in the variation in responses.

Participants should be informed that the melodic dictation they will partake in for this experimental context is very different from what they experienced before; they should not be able to get it perfectly. This information might allay stress for some participants, but in my experience, some participants who pride themselves in their aural skills ability take this as a challenge.

Implementing the experiment should be done under conditions that are controlled and documented. While some aural skills researchers may be able to exactly reproduce performances on the piano or their instrument of choice with strict adherence to tempo using a metronome and clock to time between hearings, I suggest that people incorporate software in order to have more control and to remove stress from the researcher conducting the experiment. While the setup of each data collection will change pending on the needs of each experiment, all of the variables of importance should be tracked above. An experimental melodic dictation can often look very much like it is done with the classroom, but carried out with a computer. It is also of paramount importance to consult with your institution's board of ethics before collecting any sort of data that will be used for research purposes.

Upon following a method of data collection, the next thing that is needed is to be able to score each melodic dictation. Unlike classroom marking, the scoring of each melody should be carefully documented and agreed upon beforehand. Ideally this process will involve at least a second person so some metric of inter-rater reliability can be calculated to quantify the level of discrepancy between raters. If raters are able to achieve a high degree of consistency between themselves, composite scores can be used as the dependent variable in statistical modeling.

The last step in this process would then be to statistically model your results. While there are numerous pedagogical textbooks on statistical modeling that you might explore, and even designs specifically about music (Baumgartner, 2019), in this final walk through of the process I will instead focus on what can be gleaned from a statistical analysis rather than

how to conduct one.

In the more complex designs like the one we are working with here, where we track both musical and individual features, there are many strategies and resources that exist for those looking to learn more (Harrell & Jr., 2015; McElreath, 2020). Typically what is of interest in this context of statistical modeling is to know how good your statistical model is: given what you thought you would be good at predicting, how well are you able to actually predict what you set out to do in the first place? In this example, we plan to use measures of note density, interval entropy, and a measure of musical training as our independent variables to predict our dependent variable, which is the final score.

There are multiple ways in which one could model this. Before carrying out any sort of data collection, it is always best to consult with a statistician. Further recommendations at this stage would be to pre-register any hypotheses you have (Nosek et al., 2018) and to plan to make both your data and analysis accessible to others so they are able to reproduce your results. In this analysis, we attempt to predict the score on one melody using our three variables of note density, interval entropy, and the number of weeks an individual has taken aural skills. The analysis here uses data from Baker, Monzingo, and Shanahan (2018) and incorporates a hierarchical, mixed effects model. The experiment involved N = 41 participants dictating 4 melodies from the *MeloSol* corpus (Baker, 2020).

Of interest in this fictitious analysis are two elements. The first is to find out how good your model is. The second is the ability to investigate the degree each variable contributes to your entire model's predictive ability. Both of these elements are typically found in a regression table like the one presented in Table 1. Again, while there is no way to explain all aspects of a statistical analysis in a single chapter, I highlight here what is of importance. The first element to requires us to inspect how well the model fits the data.

		Percent Correct
Predictors	Estimates	CI
(Intercept)	100.33	100.16 - 100.50
Weeks in Aural Skills	-0.00	-0.00 - 0.00
Note Density	-0.13	-0.140.11
Interval Entropy	-0.55	-0.78 – -0.32
Random Effects		
σ^2	0.01	
T ₀₀ subjectNo	0.11	
^T 11 subjectNo.interval.entropy	0.43	
ρ _{01 subjectNo}	-0.89	
ICC	0.72	
N _{subjectNo}	41	
Observations	704	
Marginal R ² / Conditional R ²	0.439 / 0.845	

Formatting:

		percent rev
Predictors	Estimates	CI
(Intercept)	100.33	100.16 - 100.50
auralWeeksTaken	-0.00	-0.00 - 0.00
note.dens	-0.13	-0.140.11
i.entropy	-0.55	-0.780.32
Random Effects		
σ^2	0.01	
T ₀₀ subjectNo	0.11	
τ ₁₁ subjectNo.i.entropy	0.43	
ρ ₀₁ subjectNo	-0.89	
ICC	0.72	
N subjectNo	41	
Observations	704	
Marginal \mathbb{R}^2 / Conditional \mathbb{R}^2	0.439 / 0.	845

[TABLE 1 HERE]

While there are many metrics to compare models, this example focuses on using R^2 , a measure that is defined by is the proportion of the variance in the dependent variable-- our final score-- that is predictable from the independent variables: note density and interval entropy. In the data reported in Table 1, the marginal R^2 value is 0.439, which is how much of data we can explain with the variables we entered into the model. The conditional R^2 is 0.845 which also includes variance the model is able to capture that is due to just how participants differ. The R^2 value typically goes between 0.00 and 1.00. A value of 0.00 would indicate that we are basically unable to learn anything from our model other than it was a bad model, with a 1.00 suggesting we have over fit our data.

Seeing as this model is able to predict about 44% of the data, it means that 66% is left unexplained, but we know a fair bit of this has to just do with differences in the baseline ability of our 41 participants. Of the results we can explain with this model, we can next inspect the next question of the degree that each of our variables affects our results. This information is found in the coefficient column of Table 1. We can interpret these values as meaning that for every 1 unit increase in the interval entropy, we can expect the final score to decrease by -0.55, all while accounting for the effects of interval entropy and weeks of aural skills. The same logic can be applied to the other variables in the model. This finding should align with intuitions. We would imagine that as note density goes up, the final average score should go down as reflected by the negative coefficient. While most aural skills instructors may have been able to intuit the direction of this relationship, what this statistical analysis shows is both the magnitude and amount of error associated with this estimation. As this process reflects a stochastic, as opposed to deterministic process, this number will invariably change a little bit from one study to the next, but the information gleaned from this small analysis can be used to inform future work building the bridge between music cognition and aural skills pedagogy.

Discussion

After even a high level walk through of everything required to obtain this empirical data, some researchers might be put off by the amount of information gained given how much work is required to obtain these estimations. Writing all of this out in a narrative shows how much work is required and possibly explains why such scant literature exists and why the bridge between music perception and aural skills is often in need of being built. Although the process is slow, what would many researchers adopting these methods enable?

The first, and probably most important result from developing a strong empirical attitude towards melodic dictation research would be a better understanding of the bounds of what can be expected of students at various points in their education. If reliable standards were obtained, students and teachers would be able to have more realistic yardsticks of achievement to assess on the global level. Individually, this would also allow for more of a fine grained approach at establishing difficulty, making it easier for students to move linearly as opposed to the large jumps we often ask of students accidentally.

A second side effect of adopting these methods more generally would be more sharing of knowledge across aural skills and more collaboration. Not only would this be possible within aural skills, but because many skill sets are required between experimental design, computational analyses of melodies, and statistical analysis, work in this area could bridge more gaps.

Third, this dialogue using language of aural skills will lead to unexpected findings and new lines of questions within aural skills. This volume shows growing interest in aural skills and now is the time to re-imagine what aural skills research could be.

This chapter has covered a lot of ground in showing this process from start to end.

There are three general benefits that the reader will hopefully take away. The first is the taxonomy in Figure 1 which helps organize the many factors that are at play in this complex process. The second benefit introduces how tools from the sciences might provide for a more objective way to talk about difficulty in melodies. I introduced the ideas of features from

UNDERSTANDING MELODIC DICTATION 18

the computational musicology literature-- numerical features that could be numerical proxy stand in for melody-- and how they might be helpful. Lastly, the walk through of points to consider when running an experiment and partial data analysis to demonstrate how those interested in the music cognition side of the bridge, but live on aural skills side can begin to walk back and forth.

References

- Baker, D. J. (2020, August 6). The MeloSol Corpus. Retrieved from psyarxiv.com/cmwr6
- Baker, D. J. (2019). *Modeling Melodic Dictation* [Louisiana State University]. https://digitalcommons.lsu.edu/0gradschool_dissertations/496/
- Baker, D. J., & Müllensiefen, D. (2017). Perception of Leitmotives in Richard Wagner's Der Ring des Nibelungen. *Frontiers in Psychology*, 8. https://doi.org/10.3389/fpsyg.2017.00662
- Baker, D, J., Monzingo, E., Shanahan, D. (2018). Modeling Aural Skills Dictation. In Richard
 Parncutt, Sabrina Sattmann, Christine Beckett, Eldad Tsabury, Isabel Martinez, Emery
 Schubert (Ed.), Proceedings of the 15th International Conference on Music Perception and
 Cognition Graz, Austria; Montreal, Canada; La Plata, Argentina; Sydney, Australia; 23-28
 July 2018.
- Baumgartner, C. M. (2019). Statistics in music education research: a reference for researchers, teachers, and students. *Music Education Research*, *21*(2), 210–211.
- Berz, W. L. (04/1995). Working Memory in Music: A Theoretical Model. *Music Perception: An Interdisciplinary Journal*, *12*(3), 353–364.
- Brown, M. (2000-2001). Music Theory, Music Cognition, and The Case of the Iguanodon's Thumb. *Intégral*, *14/15*, 72–86.
- Butler, D., & Lochstampfor, M. (1993). Bridges Unbuilt: Comparing the Literatures of Music Cognition and Aural Training. *Indiana Theory Review*, *14*(2), 1–17.
- Chenette, T. K. (2019). Reframing Aural Skills Instruction Based On Research in Working Memory. *Journal for Music Theory Pedagogy*, 18.
- Colley, I. D., Keller, P. E., & Halpern, A. R. (08/2017). Working memory and auditory imagery predict sensorimotor synchronisation with expressively timed music. *The Quarterly Journal of Experimental Psychology*, *71*(8), 1781–1796.
- Cowan, N. (2005). Working memory capacity. Psychology Press.
- Cowan, N. (2014). Working Memory Underpins Cognitive Development, Learning, and Education. *Educational Psychology Review*, *26*(2), 197–223.

- David Butler. (1997). Why the Gulf between Music Perception Research and Aural Training?

 Bulletin of the Council for Research in Music Education, 132.

 http://www.jstor.org/stable/40375331
- Eerola, T. (2016). Expectancy-Violation and Information-Theoretic Models of Melodic Complexity. *Empirical Musicology Review: EMR*, 11(1), 2.
- Frieler, K., Müllensiefen, D., Fischinger, T., Schlemmer, K., Jakubowski, K., & Lothwesen, K. (2013). Replication in music psychology. *Musicae Scientiae: The Journal of the European Society for the Cognitive Sciences of Music*, *17*(3), 265–276.
- Harrell, F. E., & Jr. (2015). Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. Springer.
- Harrison, P. M. C., Collins, T., & Müllensiefen, D. (2017). Applying modern psychometric techniques to melodic discrimination testing: Item response theory, computerised adaptive testing, and automatic item generation. *Scientific Reports*, 7(1), 3618.
- Jakubowski, K., Finkel, S., Stewart, L., & Müllensiefen, D. (2017). Dissecting an earworm: Melodic features and song popularity predict involuntary musical imagery. *Journal of Aesthetics, Creativity, and the Arts*, *11*(2), 112–135.
- Jakubowski, K., Müllensiefen, D., & Stewart, L. (2017). A Developmental Study of Latent Absolute Pitch Memory. In *Quarterly Journal of Experimental Psychology* (Vol. 70, Issue 3, pp. 434–443). https://doi.org/10.1080/17470218.2015.1131726
- Kahneman, D. (2012). Thinking, fast and slow. Penguin Books.
- Karpinski, G. (1990). A Model for Music Perception and Its Implications in Melodic Dictation. *Journal of Music Theory Pedagogy*, 4(1), 191–229.
- Karpinski, G. S. (2000). *Aural Skills Acquisition: The Development of Listening, Reading, and Performing Skills in College-level Musicians*. Oxford University Press.
- Kopiez, R., & Mullensiefen, D. (2011). Auf der Suche nach den "Popularitätsfaktoren" in den Song-Melodien des Beatles-Albums Revolver: Eine computergestützte Feature-Analyse [In search of features explaining the popularity of the tunes from the Beatles album Revolver: A

UNDERSTANDING MELODIC DICTATION 21

- computer-assisted feature analysis]. Musik Und Popularitat, 207–225.
- McElreath, R. (2020). Statistical Rethinking: A Bayesian Course with Examples in R and STAN. CRC Press.
- Meehl, P. E. (1954). *Clinical versus statistical prediction: A theoretical analysis and a review of the evidence*. University of Minnesota Press.
- Mullensiefen, D. (2009). Fantastic: Feature ANalysis Technology Accessing STatistics (In a Corpus): Technical Report v1.5.
- Müllensiefen, D., & Halpern, A. R. (06/2014). The Role of Features and Context in Recognition of Novel Melodies. *Music Perception: An Interdisciplinary Journal*, *31*(5), 418–435.
- Müllensiefen, D., & Pendzich, M. (2009). Court decisions on music plagiarism and the predictive value of similarity algorithms. *Musicae Scientiae: The Journal of the European Society for the Cognitive Sciences of Music*, 48, 257–295.
- Nichols, B. E., Wöllner, C., & Halpern, A. R. (06/2018). Score one for jazz: Working memory in jazz and classical musicians. *Psychomusicology: Music, Mind, and Brain, 28*(2), 101–107.
- Nosek, B. A., Ebersole, C. R., DeHaven, A. C., & Mellor, D. T. (2018). The preregistration revolution. *Proceedings of the National Academy of Sciences of the United States of America*, 115(11), 2600–2606.
- Paney, A. S., & Buonviri, N. O. (01/2014). Teaching Melodic Dictation in Advanced Placement Music Theory. *Journal of Research in Music Education*, 61(4), 396–414.
- Pearce, M. T. (07/2018). Statistical learning and probabilistic prediction in music cognition: mechanisms of stylistic enculturation: Enculturation: statistical learning and prediction. *Annals of the New York Academy of Sciences*, 1423(1), 378–395.
- Sala, G., & Gobet, F. (2020). Cognitive and academic benefits of music training with children: A multilevel meta-analysis. https://doi.org/10.31234/osf.io/7s8wr
- Swaminathan, S., & Glenn Schellenberg, E. (2018). Music Training and Cognitive Abilities:

 Associations, Causes, and Consequences. In Michael H. Thaut and Donald A. Hodges (Ed.),

 The Oxford Handbook of Music and the Brain. Oxford University Press.

UNDERSTANDING MELODIC DICTATION 22

- Talamini, F., Altoè, G., Carretti, B., & Grassi, M. (2017). Musicians have better memory than nonmusicians: A meta-analysis. *PloS One*, *12*(10), e0186773.
- Taylor, J. A., & Pembrook, R. G. (1983). Strategies in memory for short melodies: An extension of Otto Ortmann's 1933 study. *Psychomusicology: A Journal of Research in Music Cognition*, 3(1), 16–35.
- Van Balen, J., Burgoyne, J. A., & Bountouridis, D. (2015). Corpus Analysis Tools for Computational Hook Discovery. *Proceedings of International Society for Music Information Retrieval* 15.
- Williamson, V. J., & Müllensiefen, D. (2012). Earworms from Three Angles: Situational

 Antecedents, Personality Predisposition and the Quest for a Musical Formula. *Proceedings*from the 12th International Conference on Music Perception and Cognition, 1124–1132